
CMP 338 (Fall 2011)
Exam 2, 11/10/11

Name (sign) ________________________
Name (print) ________________________
email ________________________

Question Score
1 20
2 5
3 5
4 5
5 5
6 10
7 10
8 10
9 10
10 10

TOTAL 90

Name:

1) For the following questions:
 A is ~ c;
 B is ~ c lg N;
 C is ~ c N;
 D is ~ c N lg N; and
 E is ~ c N2.

a) After N key-value pairs have been inserted in a Binary Search Tree, how
many comparisons are required to perform a get() operation in the worst
case? C

b) After N key-value pairs have been inserted in a Binary Search Tree, how
many comparisons are required to perform a max() operation in the
average case? B

c) After N key-value pairs have been inserted in a 2-3 Tree, how many
comparisons are required to perform a deleteMax() operation in the
worst case? B

d) After N key-value pairs have been inserted in a 2-3 Tree, how many
comparisons are required to perform a select() operation in the average
case? B

e) After N key-value pairs have been inserted in a 2-3 Tree, how many
comparisons are required to perform a isEmpty() operation in the worst
case? A

f) After N key-value pairs have been inserted in a left-leaning Red/Black Tree,
how many comparisons are required to perform a keys() operation in the
average case? C

g) After N key-value pairs have been inserted in a left-leaning Red/Black Tree,
how many comparisons are required to perform a min() operation in the
worst case? B

h) After N key-value pairs have been inserted in a left-leaning Red/Black Tree,
how many comparisons are required to perform a floor() operation in the
average case? B

i) After N key-value pairs have been inserted in a Hash Table, how many
comparisons are required to perform a get() operation in the worst case?C

j) After N key-value pairs have been inserted in a Hash Table, how many
comparisons are required to perform a contains() operation in the
average case? A

CMP 338 11/10/11 page 2

Name:

2) A Binary Search Tree has small integer keys between 1 and 10. Searching
for a key of 5, comparisons are made with the keys of the nodes in the tree.
Which of the following sequences of keys could NOT have been encountered
during the search?

 a) 10, 9, 8, 7, 6, 5
 b) 2, 6, 9, 4, 5
 c) 10, 1, 8, 2, 3, 7, 4, 6, 5
 d) 5
 e) 1, 2, 8, 4, 5

3) What does the operation floor(Key key) do on an ordered symbol
table?

Returns the largest Key in the symbol table less than or equal to key (or null).

4) In a left-leaning Red/Black Tree, what is the best upper-bound on the ratio
of the length of the longest path from the root to a leaf to the length of the
shortest path from the root to a leaf? 2 : 1

5) The following table, from a published road map, purports to give the
length in miles of the shortest routes connecting cities. Correct the error in
the table. What kind of graph does this table represent?

An edge-weighted undirected graph.

Providence Westerly New London Norwich
Providence 53 54 48
Westerly 53 18 101 30
New London 54 18 12
Norwich 48 101 30 12

CMP 338 11/10/11 page 3

Name:

6) Below is (part of) the declaration of a BinarySearchTree class.
Complete the implementation of the rank() operation for this class.

public class BinarySearchTree<Key extends Comparable<Key>, Value> {
 protected class Node {
 protected Key key;
 protected Value val;
 protected Node left;
 protected Node right;
 protected int N;
 Node(Key k, Value v) { ... }
 }
 protected Node root;
 public int rank(Key key) {
 return rank(root, key);
 }

 private int rank(Node n, Key key) {
 if (null == n)
 return 0;
 int cmp = key.compareTo(n.key);
 if (cmp < 0)
 return rank(n.left, key);
 if (0 < cmp)
 return size(n.left) +
 (null == n.val ? 0 : 1) +
 rank(n.right, key);
 return size(n.left);
 }

CMP 338 11/10/11 page 4

Name:

7) Below is (part of) the declaration of a Part class. Complete the
implementation of hashCode() in a way that is consistent with
equals(). Also, implement a hash() method that maps any Part to an
integer between 0 and 100.

public final class Part {
 final String name;
 final double weight;
 final Part[] subparts;
 public Part (String n, double w, Part[] s) {
 name = n; weight = w; subparts = s; }
 public boolean equals(Object o) {
 if (null == o) return false;
 if (this == o) return true;
 if (this.getClass() != o.getClass()) return false;
 Part p = (Part) o;
 if (!name.equals(p.name)) return false;
 if (weight != p.weight) return false;
 if (subparts.length != p.subparts.length) return false;
 for (int i=0; i<subparts.length; i++) {
 if (!subparts[i].equals(p.subparts[i])) return false;
 }
 return true;
 }
 public int hashCode() {
 int hash = 17;
 hash = 31*hash + name.hashCode();
 hash = 31*hash + ((Double) weight).hashCode();
 for (int i=0; i<subparts.length; i++) {
 hash = 31*hash + subparts[i].hashCode();
 }
 return hash;
 }

 public int hash() {
 return hashCode() & 0x7FFFFFFF % 101;
 }

CMP 338 11/10/11 page 5

Name:

8) Below is (part of) the declaration of a Student class. Complete the
implementation of the getSongs() method to return the set of songs that a
student might obtain through some chain of friends.

public class Student {
 private Set<Student> friends = new HashSet<Student>();
 private Set<Song> songs = new HashSet<Song>();
 public Student(Set<Student> f, Set<Song> s) {
 friends = f;
 songs = s;
 }
 public Set<Song> getSongs() {
 Set<Student> visited = new HashSet<Student>();
 return getSongs(visited);
 }
 private Set<Song> getSongs(Set<Student> visited) {
 Set<Song> songs = new HashSet<Song>();
 if (visited.contains(this))
 return songs;
 visited.add(this);
 for (Student s : friends) {
 songs.addAll(s.getSongs(visited));
 }
 return songs;
 }
}

CMP 338 11/10/11 page 6

Name:

9) The graphs in the following questions have ||V|| vertices and ||E|| edges.
Let a be ~ c (||E|| + ||V||),
 b be ~ c (||E|| + ||V|| lg ||V||),
 c be ~ c (||E|| lg ||E||), and
 d be ~ c (||E|| ||V||). What are the running times of the following?

a) Depth-first search. a
b) Breadth-first search. a
c) Prim's minimum spanning tree algorithm. b
d) Kruskal's minimum spanning tree algorithm. c
e) Dijkstra's shortest path algorithm. b

10) Briefly explain how Dijkstra's Shortest Path algorithm works. What is
the problem it solves? What are the data structures it relies upon? How are
they used?

Dijkstra's Shortest Path algorithm finds the shortest path between a source node s
and a destination node d in an edge-weighted undirected graph with non-negative
edge-weighs.

The algorithm repeatedly relaxes the closest unrelaxed node from s (starting with s
itself) until it relaxes d. It associates with a node n, a non-negative distance and a
previous node. If previous is non-null, it is the next to last node on a path from s
to n and distance is the length of that path. If n has been relaxed, this path is the
shortest path from s to n. Relaxing n entails determining, for each neighbor m of
n, if there is a path from s to m through n that is shorter than the path (if there is
one) currently encoded in the distance and previous value for m. If so, these
values are modified to reflect the shorter path.

A priority queue is used to maintain the distances from s to unrelaxed nodes. A
map (HashMap) from nodes to sets (HashSets) of nodes may be used to encode the
graph. Maps (from nodes to nodes and to Doubles) may also be used to encode
distance and previous. A set can also be used to keep track of which nodes have
been relaxed.

CMP 338 11/10/11 page 7

